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SUMMARY 
 

When more than one time series of abundance indices is used in an assessment model 
such as a surplus production model or VPA, it is necessary to determine the relative weights of 
the various series and observations in the series. Each weight is typically represented by the 
inverse of a parameter for the variance of the deviation between each model predicted and time 
series observation. The weights may be either fixed beforehand or estimated. This assigning of 
weights has long been a contentious issue in many stock assessments because there is no 
universally accepted protocol and the resulting policy recommendations can depend strongly 
on the weighting method applied.  This paper reviews and reformulates the key methodological 
considerations in the assigning of weights, summarizes the various pros and cons of some 
alternative weighting methods and attempts to identify alternatives that most adequately 
address the various considerations. This paper evaluates the relative merits and potential 
effects on stock assessment results of applying nine alternative methods to weight different 
abundance series. For simplicity, the numerical evaluation will be undertaken by fitting a 
simple surplus production model to the catch rate data used in the 1998 assessment of western 
Atlantic bluefin tuna (Thunnus thynnus). Because other stock assessment methods used by 
ICCAT, such as ADAPT VPA, rely heavily on the tuning of modeled trends in abundance to the 
available abundance series data and their relative weightings, it should be possible to readily 
generalize the results to these other methods.    

 
RÉSUMÉ 

 
Lorsque l’on utilise plus d’une série temporelle d’indices d’abondance dans un modèle 

d’évaluation tel que le modèle de production excédentaire ou la VPA, il est nécessaire de 
déterminer le poids relatif des diverses séries et des observations dans les séries. Chaque poids 
est typiquement illustré par l’inverse d’un paramètre pour la variance de la déviation entre 
chaque modèle prévu et l’observation des séries temporelles. Les poids peuvent être fixés 
d’avance ou estimés. Cette attribution de poids est depuis longtemps une question débattue 
dans de nombreuses évaluations de stock, du fait qu’il n’y a pas de protocole universellement 
admis, et que les normes recommandées qui en découlent peuvent dépendre à un degré 
important de la méthode de pondération qui est appliquée. Le présent document examine et 
formule de nouveau les considérations clés sur la méthodologie de l’attribution de poids, 
récapitule les divers avantages et inconvénients de quelques alternatives de pondération et 
trente de définir quelles sont les alternatives qui traitent le mieux des diverses considérations. 
Le document évalue les mérites relatifs, et les effets potentiels sur les résultats des évaluations 
de stock, de neuf alternatives méthodologiques pour la pondération de différentes séries 
d’abondance. Pour simplifier les choses, l’évaluation numérique sera entreprise en ajustant un 
simple modèle de production excédentaire au taux de capture utilisé dans l’évaluation de 1998 
du thon rouge (Thunnus thynnus) de l’Atlantique. Du fait que d’autres méthodes d’évaluation 
de stock utilisées par l’ICCAT, telles que la VPA ADAPT, dépendent beaucoup du calibrage 
des tendances modélisées de l’abondance aux séries disponibles de données sur l’abondance et 
leur poids relatif, il devrait être possible d’étendre aisément les résultats à ces autres 
méthodes. 
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RESUMEN 
 
Cuando se usa más de una serie temporal de índices de abundancia en un modelo de 

evaluación, como el modelo de producción excedente o el VPA, es necesario determinar cuales 
son los pesos relativos de las diversas series y observaciones en las series. Cada peso relativo 
está típicamente representado por la inversa de un parámetro para la varianza de la 
desviación entre cada predicción y observación sobre serie temporal del modelo. Los pesos 
relativos pueden ser fijados de antemano o bien estimados. Esta asignación de pesos relativos 
viene siendo desde hace tiempo un contencioso en muchas evaluaciones de stock, ya que no 
hay un protocolo universalmente aceptado y la política resultante respecto a recomendaciones 
puede depender mucho del método de ponderación aplicado. Este documento  examina y hace 
una nueva formulación de las consideraciones metodológicas clave en la asignación de pesos 
relativos, resume las ventajas y desventajas de algunos métodos de ponderación alternativos e 
intenta identificar las alternativas mas adecuadas para tratar las diferentes consideraciones. 
El documento evalúa las ventajas relativas y las posibles repercusiones que sobre los 
resultados de la evaluación de stock tendría la aplicación de nueve métodos alternativos para 
ponderar diferentes series de abundancia. Para simplificar, la evaluación numérica se hará 
ajustando un sencillo modelo de producción excedente a los datos de tasa de captura 
empleados en la evaluación de stock de atún rojo (Thunnus thynnus) del Atlántico oeste hecha 
en 1998. Debido a que otros métodos de evaluación de stock empleados por ICCAT, tales como 
el ADAPT VPA, se basan sobre todo en el ajuste de las tendencias modeladas de la abundancia 
a las series de datos de abundancia disponibles y sus pesos relativos, debería ser posible hacer 
una aplicación general de los resultados a estos otros métodos.    
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INTRODUCTION 
 

When more than one time series of abundance indices is used in an assessment model such as a 
surplus production model or VPA, it is necessary to determine the relative weights of the various 
series and observations in the series. Each weight is typically represented by the inverse of a 
parameter for the variance of the deviation between each model predicted and time series observation 
and may be either fixed beforehand or estimated.   

 
The assigning of these weights has long been a contentious issue in many stock assessments 

(Schnute and Hilborn 1993; ICCAT 1999; Geromont and Butterworth 2000). This is especially 
because there is no universally accepted protocol for it and because the resulting policy 
recommendations can depend strongly on the weighting method applied. This paper reviews and 
reformulates the key methodological considerations in the assigning of weights, summarizes the 
various pros and cons of nine alternative weighting methods and attempts to identify alternatives that 
most adequately address the various considerations.  

 
This paper also evaluates potential effects on stock assessment results of applying each of several 

alternative methods to weight different abundance series.  Some of these have been proposed and 
applied in recent ICCAT assessments and meetings (e.g., ICCAT 1999; Geromont and Butterworth 
2000). For simplicity, the numerical evaluation will be undertaken by fitting a simple surplus 
production model to the catch rate data used in the 1998 assessment of western Atlantic bluefin tuna.  
Because other stock assessment methods used by ICCAT rely heavily on the tuning of modeled trends 
in abundance to the available abundance series data and their relative weightings, the results should be 
readily generalizable to these other methods.  The input and output weightings, estimates of the trends 
in abundance, the estimates of key model parameters and their confidence intervals, and the model 



 

deviance (goodness of fit (GOF)) provided by each weighting scheme are compared between the 
different weighting methods.   

 
Some general methodological considerations for assigning weights to different data series 

 
In this paper we define "weights" or "weightings" for different data points or time series as the 

inverse of the variance in deviations between the natural logarithms of observed and model-predicted 
data points.  This would assume that the likelihood function of the data is lognormal (see below).  If 
some other likelihood function were applied, then the weightings could be defined in terms of the 
inverse of the square of the coefficients of variation (CVs) of these deviations without taking the 
natural logarithms (mathematically very similar to the above).  These quantities are intuitive because 
they effectively weight the deviations between observations and model predictions in the estimation 
of stock assessment model parameters.  The larger the variance or CV, the lower the weight of a data 
point and data series. 

 
If the different series were reasonably long, e.g., at least 15 years, and obtained using unbiased 

and consistently applied sampling methods, and the stock assessment model was accurately specified, 
then the variances for each time series could be estimated by fitting the model to all of the combined 
data.  However, this is almost never the case.  In many different stock assessments, due to many 
imperfections in sampling design and the application of fishery dependent abundance indices, there is 
large uncertainty over whether the time series can provide an unbiased estimate of the trend in 
abundance of the part of the population it is supposed to track.   

 
Additionally, one of the largest uncertainties in stock assessment is not over the values of model 

parameters, but over the structure of the stock assessment model itself.  For example, one of the most 
common uncertainties involves how to model the catching power of fishing fleets.  With such 
structural uncertainties, the issue of weighting becomes even more important since an inappropriate 
choice of weightings can potentially amplify the biases in the model structures applied.  Relying on 
estimation to assign weights could give too much weight to more precise fishery dependent indices 
that do not accurately account for temporal increases in catchability and too little to imprecise but 
unbiased fishery independent ones, in a stock assessment model that incorrectly assumes that 
catchability is constant over time.  

 
Even if there is only one time series of abundance, the matter of weighting different observations 

is not trivial. For example, if sufficiently detailed information exists, coefficients of variation (CVs) 
derived from the analysis of research survey or CPUE data may be provided for individual 
observations. If some of these are very large and some are very small there is no universal protocol on 
how these should be used in parameter estimation, if at all, when a stock assessment model is fitted to 
the time series (Geromont and Butterworth 2000).   

 
The problem of agreeing on a method to weight different data series and data points in a stock 

assessment can become most severe when different methods lead to different policy 
recommendations. This can occur prominently when different time series for supposedly the same 
segment of the assessed population suggest opposing trends in abundance. It may occur more subtly 
when there are several different time series covering different age groupings of the same population.  
But the end result is the same: different methods support different management policy options as in 
the 1998 assessment of western Atlantic bluefin tuna (ICCAT 1999). 

 
Some nagging questions that arise regarding this problem include the following.  
 
• How can different weighting methods give rise to such different results in the first place?   
 
The answer to this question is that there are major mechanical differences between the methods that 
give rise to differences in estimation results when different time series are not entirely consistent in 



what their trends suggest about population dynamics. We try to illustrate how these can occur below 
in the example. 
 
• Why have scientists so frequently differed so strongly on which weighting method to apply?   
 
The answer to this question is complex and there are many different factors involved. However, 
scientists should agree that their choice of a method should not be made to depend on the particular 
result that it favours. Instead, it is likely that in each stock assessment, there are a variety of objective 
scientific considerations that can be addressed such that the choice of a method to apply is based 
mainly on the overall scientific credibility of the method.  
 
• What can be done to provide a more objective and scientific basis to help scientists come more 

easily to an agreement on which weighting method to apply?  
 
Until now little has been done to address this question. Due to this lack of guidance, it is predictable 
that strong differences among scientists will continue to occur regarding this issue. To attempt to 
provide some headway in improving the scientific basis for choosing a method for weighting different 
time series in stock assessment, this latter question is the focus of this paper. A list of considerations 
for choosing a weighting method is outlined in the following section. 
 
Some general steps for the objective choice of a weighting method 
 

While the choice of a weighting method should be made before running the stock assessment 
model, there are some additional considerations for the application of a weighting method to see that 
it is applied sensibly and behaves sensibly once applied. The first four steps are ones to be taken 
before evaluating the stock assessment data. The latter four steps deal with the treatment of different 
data series once the weighting method has been chosen and diagnostics to test for anomalous 
estimation behaviour that might lead to the reconsideration of a weighting method.   
 
Step 1:  Agree to adopt a method for weighting before viewing the stock assessment results 
 
The identification of potential methods to apply to assign weightings to different data series should be 
based on objective scientific considerations before the stock assessment model is fitted to the data.  
The particular stock assessment results obtained from the different weighting methods, i.e., whether 
they are more or less conservative, should not be used to determine which weighting method to adopt 
for providing policy advice. However, anomalous estimation behaviour resulting from the application 
of a candidate weighting method (see below) would require that it be rejected and/ or modified. 
 
Step 2:  Identify the alternative weighting methods that could be applied 
 
Based on previous stock assessments of the same stock and experience of the scientists present, 
identify several potential alternative methods to assign weightings for the alternative methods.  
 
Step 3: Identify the relative scientific merits of each alternative weighting method 
 
Perhaps the most important overall consideration is how likely each method is to avoid bias in the 
estimation of trends in abundance. For example, if there is a strong objective evidence suggesting that 
some time series are less biased than others, the method should permit this to be accounted for and 
prevent such time series from being down-weighted.  Such down-weighting could occur for example 
from a mis-specification of stock assessment model structure as mentioned above. The method should 
allow the incorporation of, e.g., GLM, estimates of precision in data points in each of the time series 
that were obtained before running the stock assessment model. The method should be well-suited to 
the amount of data available – for example, if it requires the estimation of variances for each time 
series, the time series should be long enough for this.  Also, each method should be expected to give 
an accurate assessment of the uncertainty in the stock assessment, in terms of uncertainty over the 



values of stock assessment model parameters. This could be possible if the method allowed the time 
series variances to be adjusted depending on the goodness of fit (GOF) of the model to the 
observations. The method should avoid anomalous estimation behaviour, for example, inadvertently 
placing most of the weight on one of several different time series, especially when expert judgment 
would suggest otherwise. Perhaps the most objective approach, if time were available, would be to 
simulation test each alternative method to evaluate the potential bias and precision in stock 
assessment model parameter estimates that might result from each alternative weighting method.  See 
Appendix 1 for a more detailed outline of these suggested criteria. A check list of these is provided 
below. 
 
Checklist of criteria for the choice of a weighting method 
 
(i) Does the method incorporate GLM or other estimates of the relative reliability of data points for a 
particular data series?   
 
(ii) Does the method avoid according unrealistically high precision (low variance) and high weight to 
some data series?   
 
(iii) If empirically determined input variances are applied in the weighting method, can the method 
allow for readjustments of these weightings based on the goodness of fit of the model to the data?   
 
(iv) Does the weighting method allow the incorporation of expert judgement on the relative reliability 
of each series as an index of abundance? 
 
(v) Does the weighting method prevent the most reliable data sets from being down weighted?  
 
(vi) Is the weighting method conducive to there being relatively few data points in the time series?   
 
(vii) Could the weighting method be expected to result in an accurate assessment of parameter 
uncertainty?   
 
(vii) Is the method easily put into practice?  
 
Step 4:  From the above considerations, choose the method with the highest overall scientific merits.   
 
The reasons for choosing one particular weighting method need to be reported in the stock assessment 
document. It may not be possible to eliminate all of the other candidate methods. However, this is a 
clear instance where it is desirable to adopt a baseline method for weighting alternative data series.  
Without one, the choice of the weighting method is then passed on to fishery managers who are often 
less well-qualified to make this choice.   
  
Step 5:  Based on knowledge about each data series, rank the different series according to their 
reliability as unbiased indices of trends in abundance.   
 
See Appendix 1, criteria (4) for some suggestions about how this might be done objectively. The 
weighting method chosen should not provide results that contradict this ranking. If it did, then this 
would suggest that the weighting method chosen and possibly the stock assessment model structure 
and assumptions adopted need to be reconsidered.  
 
Step 6:  Identify and segregate sets of data series that suggest contradictory trends in abundance.   
 
It is common in stock assessment for different time series to suggest contradictory trends in 
abundance. Several have pointed out that stock assessment methodologies that average across data 
series that suggest contradictory trends in abundance should be avoided (Richards 1991; Schnute and 
Hilborn 1993; Punt and Hilborn 1997). Before applying a stock assessment method to different input 



data, it is thus important to identify which different sets of data, if any, suggest contradictory trends in 
abundance. One approach to identifying such data is to run the stock assessment separately on each 
individual time series and to see whether the confidence intervals on trends in abundance overlap. If 
they do not, then this would indicate contradictory data. 
 
Step 7.  Apply the weighting method chosen and stock assessment method only to data sets that 
appear to indicate non-contradictory trends in abundance, unless the statistical method is specifically 
designed  to deal with contradictory data.  
 
Some have suggested statistical methods that incorporate such data in a way that accounts for 
contradictory trends in abundance, for example, by producing bimodal probability distributions for 
trends in abundance (Schnute and Hilborn 1993; McAllister et al. 1999). If there is not time to 
develop and apply such methods, it has been suggested that the stock assessment be conducted 
separately on the opposing sets of data and that the results be treated as separate hypotheses.  
However, the issue of how stock assessment scientists should weight such alternative hypotheses 
before presenting them to managers would still need to be addressed (Butterworth et al. 1996; 
McAllister et al. 1999).   
 
Step 8:  Check the goodness of fit (GOF) of the stock assessment model to the alternative time series.  
After the stock assessment model has been fitted to the data, it is always sensible to evaluate the GOF 
of the model to the data. For example, is there strong autocorrelation in model residuals? If there is, 
this would suggest model mis-specification. If there was little that could be done in the immediate 
stock assessment to address the possibility of model misspecification, then it would be important to 
evaluate the GOF of the model to each of the different time series. The use of statistics for model 
deviance, such as chi-square tests, would indicate time series with poor GOF. If the time series 
deemed to be the most credible as indices of trends in abundance had the poorest GOF, then this 
would suggest that the weighting method applied needs to be reviewed. Also, if the model parameters 
estimates are at or near their boundary conditions, then the model may be mis-specified and the 
weighting method may need to be reviewed.  
 
 
METHODS 
 
Overview of some alternative methods to assign weights to different time series 
 

A large variety of methods have been suggested and applied in stock assessment to assign 
weightings to alternative data series. Nine alternatives are listed below and the resulting loge of the 
likelihood functions (LnL) provided. Unless otherwise specified q was estimated as: 
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Method 1. No weighting or inputted equal weighting ( 2σ ) (used in VPA)   
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The value for 2σ  is often chosen based on previous experience, e.g., in the 1998 western Atlantic 
BFT assessment it was 0.42.   
 

Method 2. Weighted by the MLE estimate of variance 2ˆ jσ  for each series. This is similar to  iterative 

re-weighting (see below).   
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Method 3.  The inverse variance method with annual observations proportional to the inputted annual 
CV2 and the average variance for each series equal to the MLE estimate (NMFS 1998). 
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and cj is a constant for each series whose value is chosen such that the average variance for each data 

series equals its estimated average variance, 2ˆ jσ . 

 
Method 4. Iterative re-weighting.  The sigma for each series is treated as a free parameter 
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Method 5. Input variances re-adjusted by expert judgement, 2
,' yjσ , plus an estimated scale parameter 
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The average input variance of each time series is set according to the scientists' expert judgement on 
the relative reliabilities of the different series as indices of trends in abundance. The GLM or other 
estimates of variances for individual data points in a time series are incorporated by making the 
assigned variance the sum of some unaccounted for variance, aj, plus the GLM variance for each data 

point. Thus, an average variance, 2
jσ , is assigned by expert judgement to each series, j. The input 



variances, 2
,' yjσ , for each data point are initially adjusted by the estimated sample variances, 2

, yjσ , 

e.g., from GLM analysis, assuming that the sample variances and the unaccounted for sources of 
variance are additive.   
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Thus each input variance is given by: 
 

( ) 2
,

1

2
,

22
,

1
' yj

n

y
yjjyj

j

n
σσσσ +−= ∑

=
 

 
Method 6. This method has often been applied in catch-age analysis (Quinn and Deriso 1999; Sullivan 

et al. 1999; Parma 2000).  Input variances re-adjusted by expert judgement, 2
,' yjσ  (same as that in 

method 5 above), but multiplied by a scale parameter ĉ  
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Method 7. Input variance: simply dividing by the inputted variances or CVs (often done in the VPA): 
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Method 8. Additional variance method (Geremont and Butterworth 2000). 2
,ˆ jAσ  is an estimable 

parameter for each series 
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Method 9. Inverse variance weighting with a variance input for each year, analogous to method 7. 
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See Appendix 1 and Table 1 for a comparison of the relative merits of each of these alternatives. 
 
A Numerical Evaluation of the Alternatives: Application to western Bluefin tuna 

 
Three methods to determine weights for different data series have been used in previous ICCAT 

bluefin tuna assessments and are as follows. (1) Equal input weighting - each data point in each series 
is given a fixed equal weight that is decided upon before fitting the assessment model to the data 
(method 1 above). (2) Inverse variance weighting (also called input weighting) - each data point in 
each series is weighted by the inverse of the variance estimated for it by GLM standardization 
(method 7). (3) Iterative re-weighting (also called maximum likelihood) - the relative weight of each 
time series is estimated by fitting the assessment model to the time series and other data to maximize 
the likelihood of the fit (method 4).   

 
Geromont and Butterworth (2000) suggested a fourth method called "additive variance" (method 

8) that is intermediate between inverse variance and iterative re-weighting. The weightings that are 
inputted to the assessment model are externally estimated as variances for each year and series (as in 
input weighting). Then, the assessment model is applied to estimate an additional variance for each 
series (similar to iterative re-weighting). While this method avoids many of the problems of equal 
input weighting (ignoring the model goodness of fit for the data) and iterative re-weighting (e.g., all of 
the weight going to one series), it still allows the estimation algorithm applied to change the relative 
weight of each series, depending on the relative consistency of each series with the assumed model 
structure (Appendix 1). This would be undesirable if there were strong a priori reasons for weighting 
one series more highly than another and there was uncertainty over the correctness of the assumed 
model structure.  

 
A fifth alternative (method 6), has often been applied in catch-age analysis and is currently 

applied by the International Pacific Halibut Commission (Quinn and Deriso 1999; Sullivan et al. 
1999; Parma 2000).  This is constant relative weighting determined by expert judgement and a single 
estimated scale parameter, an extension of the additional variance method. This involves inputting the 
variances for data points in each alternative abundance series based partly on the output of GLM 
standardization and partly on expert judgment. The relative weightings of the different series could be 
initially determined by GLM but modified by expert judgement based on past experience with other 
similar data sets, additional knowledge about how the data were obtained and key properties not 
accounted for in GLM (e.g., their spatial and temporal coverage). For example , in the 1998 WA BFT 
assessment, the equal weighting approach assigned input CVs of 0.4 to all of the data series. This 
value, squared and averaged over all data series, should be at least as large as the average σ2 from 
GLM analyses (since those from the latter often underestimate those based on GOF). Additional 



knowledge about each series could motivate adjustments to the average CV for each series upwards or 
downwards from the global average depending on knowledge about how the data for it were collected 
and its overall reliability as an index of abundance. The within series relative weightings for annual 
observations could be determined entirely by GLM (as shown above). Then, instead of estimating a 
separate additional variance for each series, a single scale parameter that multiplied each of the input 
variances would be estimated by fitting the assessment model to all of the abundance series and other 
data. This scale parameter would jointly expand or decrease (within pre-determined limits) the 
inputted variances in all of the series, depending on the overall goodness-of-fit of the model to all of 
the different data series. This would allow the inputted relative weights, that are based on the relative 
reliability of each data series, to remain the same, while allowing for empirically-based adjustments to 
the overall variance of the fit. The relative merits of this and other methods are further addressed in 
Appendix 1 and summarized in Table 1. 

 
Details of Numerical Evaluation 
 

We evaluated the effect of applying the nine alternative methods for weighting on stock 
assessment results. Using maximum likelihood methods, we fitted a discrete time Schaefer model to a 
selected set of data series for western Atlantic bluefin tuna (Table 2, Fig. 1). The data series selected 
were ones that were judged to represent the fishable biomass of this stock. They included all the series 
that included fish greater than 10 years of age (ICCAT, 1998, Table 6). All of these indices are fishery 
dependent, and their lengths vary from 8 to 18 years.  In an actual assessment, it would be necessary 
to determine the relative reliability of the various series based on their area coverage and other 
considerations. For the sake of this exercise, we assumed that the series were equally believable; for 
methods 5 and 6, the seven indices were given equal average input weights. None of the series 
appeared to suggest contradictory trends in abundance a priori (Fig. 1), though there was considerable 
variability in the apparent trends.   

 
The inputted versus outputted weights, estimates of trends in abundance and estimates of the 

Schaefer model parameters r and K were obtained for each weighting method. Additionally, the 
deviance in the residuals from each weighting method were computed and evaluated using chi-square 
tests (Gelman et al. 1995) for each series separately and in combination. Values greater than 0.99 or 
less than 0.01 indicate that the model or the model’s likelihood function is mis-specified. Deviance is 
given by (Gelman et al. 1995): 
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where n is the number of data points, xi,y is the observed value of index i in year x, E(xi,y|θ) is the 
expected value of the index i in year y, given the estimated parameters θ, (i.e. E(xi,y|θ) is the predicted 
value of index i in year y), and var(xi,y|θ) is the variance of x,y.  The variances were: 

 
where σi,y

2 is the model’s estimate.  
 
 
RESULTS 
 

The seven data series together indicated a general declining trend throughout the time series of 
the fishery (Fig. 1). The nine weighting methods generally gave two kinds of fits, either K was 
estimated around 64000 MT and r around 0.34 (Method 1,5,6,7 and 9), or the model fit a very high K, 
and low r (Table 3). In the latter case, the best estimate of r was at the lower constraint of 0.01 
(Method 2,3,4 and 8). However, these CPUE series, combined with the catch data were not well 

( ) 2
,

2

,, )|(1)exp()|var( θσθ yiyiyi xEx ⋅−=



described by a Schaefer model for either the low r or intermediate r fits. The methods that input a 
variance and did not update it (Methods 1, 7 and 9) show either very high or very low total deviance 
values, implying that the model is mis-specified (Table 4). Methods that estimate the variance within 
the model showed fairly similar total deviance. However, the relative fits of the various serie s 
between methods imply that some of the data sets may be contradictory. For example, methods that fit 
a low r have lower deviances with the JLL Area wt series, while methods that fit a high K have lower 
deviances with most of the other series. If time allowed, it would be worthwhile to fit the data sets 
separately, or at least separate the series that favor a low r from the series that favor a low K.  

 
The methods estimated different parameter values because the different methods assigned very 

different weights to the various series. Table 5 shows the average weights applied to each series as 
inputs, and Table 6 shows the average weights applied to each series under the fitted model. The 
relative weights of the series remain the same for methods 1, 7 and 9, which enter input variances and 
do not update them, and for method 6, which multiplies the input weights by a scale parameter. For 
method 5, the output weights were the same as the input weights, but this would not be the case if the 
input weights were different among series and the estimated added variance was greater than zero.  
The methods that input variances (7 and 9) placed a very high weight on the JLL Area Wt series, 
which had been assigned CVs of 0.2 in the absence of variance estimates- much lower than the CVs 
estimated for the other six series (Table 2). Thus, this series was given 27% of the weight, while 
Larval and US LL GOM, which had very high CVs (Table 2) were given only 8% and 7%, 
respectively, of the weight. Conversely, the methods that could change the relative fit of each series 
tended to downweight the JLL Area weight series, and increase the weight on JLL GOM and US RR.  
Methods 2, 3, 4 and 8 gave the JLL Area Wt series 1-2% of the weight.  Method 5 did not greatly 
change the relative weights of the series. 

 
Similar information is shown in Table 7, which shows the average input sigma for each series, 

and Table 8 which shows the average estimated sigma in each series. These results indicate that the 
methods vary in the accuracy of their estimates of sigma, and thus in their estimates of the parameters 
(i.e. they cannot all be right).  

 
The guidelines presented above for choosing a method suggest that the chosen method be 

reconsidered if the weighting ranks of the data sets are different from the agreed upon ranking of the 
reliability of the data sets. By this criteria, methods 2, 3, 4 and 8 would not be deemed acceptable, 
since they greatly downweight JLL Area wt and overweight JLL GOM. The input weighting methods 
(7 and 9) greatly overweight the JLL Area wt series; however, this problem could be corrected by 
giving the JLL Area wt series an assumed variance more similar to the observed variances in the other 
series.    

 
The guidelines suggest that contradictory data should not used. Because the Schaefer model 

had difficulty fitting both the Can GSL and JLL GOM series and the JLL Area Wt and Larval series, 
it would be worth running the model with each series separately to determine which series are 
contradictory.  
 

Finally, the guidelines suggest examining the goodness of fit of the model under the chosen 
method. Although none of the methods fitted the data really well, only methods 7 and 9 provided an 
exceptionally bad fit in terms of model deviance (Table 4). However, methods 2, 3, 4 and 8 fit an r 
value at its lower limit, a value that appears to be inconsistent with the biology of the fish.  
 
 
DISCUSSION 
 

This paper provides a set of guidelines that could be used to help fishery scientists to more easily 
agree on a method to assign weightings to alternative data series in a stock assessment. It is suggested 
that the method should be chosen before the stock assessment results are obtained. Seven scientific 
criteria are suggested that can be applied to evaluate the relative merits of each candidate method 



(Table 1). An evaluation of 9 different methods that could be applied to the western bluefin stock 
shows that the methods vary widely with regards to the criteria. Perhaps the most serious 
characteristic to avoid is the possibility that the method will inadvertently assign the highest weights 
to the series deemed by the scientists to be the most likely to be biased and the least weight to the 
series deemed least likely to be biased. This is possible in methods such as iterative reweighting 
where the variances for each time series is estimated solely on the basis of the goodness of fit of the 
stock assessment model to the time series. Time series that reflect more precise time trends in 
abundance will be given higher weight than less precise series that may be less biased. Even with 
input weighting methods, care must be taken that none of the series have been given implausibly high 
weights (as with JLL Area Wt above), since this causes these series to dominate the fit.  

 
The weighting method chosen might be reconsidered only if the stock assessment results 

obtained are biologically or statistically unreasonable. This could occur if: 
 
• The estimates of key population parameters such as the intrinsic rate of increase, are anomalous 

(i.e. biologically impossible or at one of the boundary conditions).   
• The model deviance is anomalously large, especially for series believed to be the most credible.   
• Time series judged to be the most reliable are downweighted and vice versa.   
• Some time series are inadvertently given most of the weight.   
• Confidence intervals are unrealistically narrow.   
 
 
RECOMMENDATIONS 
 

The recently proposed additional variance method (Geromont and Butterworth 2000) relies on 
the goodness of fit (GOF) of the stock assessment model to each data set to determine its "additional" 
variance and thereby its overall relative weighting. This is attractive because the method for allocating 
weightings becomes strictly mechanical without any intervention from stock assessment scientists.  
However, relying entirely on GOF to determine weightings can amplify biases in estimated trends, 
particularly when the data series with the smoothest trends and that are consistent with model 
predictions are not the most accurate. thus, this "hands-off "approach to determining relative 
weightings, while appearing objective and reducing debate over model inputs, may often produce 
anomalous stock assessment results. Instead, a more "interventionist " approach to determining 
relative weightings which relies on knowledge outside of that contained in the data themselves could 
help to avoid such undesirable outcomes. It should be noted that if expert judgement were to be 
applied, the method would only be transparent if the judgement applied was clearly explained and 
documented. 
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APPENDIX 1:  A LIST OF CRITERIA THAT CAN BE USED TO HELP SCIENTISTS 
OBJECTIVELY CHOOSE A METHOD TO WEIGHT ALTERNATIVE DATA POINTS AND 
DATA SERIES IN A STOCK ASSESSMENT 
 

There are a variety of scientific criteria that could be applied to help scientists objectively choose 
a method to weight alternative data points and data series in a stock assessment. These are mentioned 
in the section on general considerations and specified and discussed in more detail in this appendix.  
A recent paper by Geromont and Butterworth (2000) makes reference to three of these. We 
reformulate these to make them more generally applicable and provide a few additional criteria.  
These criteria should be used jointly in evaluating alternative candidates for a weighting method, 
though some criteria are more important than others. 
 
(1) Does the method incorporate GLM or other estimates of the relative reliability of data points for a 
particular data series?   
 

For example, CPUE data points for years for which there are few commercial fishing vessels 
may be less precise and the "random-effects GLM estimates of variance" (Geromont and Butterworth 
2000) given to these years may be larger. Some weighting methods such as input weights (methods 7 
and 9) and the additional variance method (method 8) (Geromont and Butterworth 2000) can directly 
incorporate such variance estimates from GLM on data points in each time series.  Methods 3, 5, and 
6 also allow this. Thus data points with low sampling precision can be down-weighted. 
 
(2) Does the method avoid according unrealistically high precision (low variance) and high weight to 
some data series?   
 

This has been pointed out as a classic problem with the iterative re-weighting method (method 4) 
(Geromont and Butterworth 2000). This is also a problem for methods 2 and 3 in this paper, as the 
mean variance for each time series is estimated in the stock assessment.  It is potentially a problem for 
method 8, because it allows the estimation of a variance term for each time series in addition to the 
ones inputted for each time series. If the inputted variances are low relative to the additional estimated 
variances, unrealistically high weight can still be accorded to some time series. This is undesirable 
because it can give rise to a strong negative bias in the precision in parameter estimates. If there are 
many different time series, this tends to increase the chance that any one or a few of them, just by 
chance will provide an anomalously good fit to the model.  Most seriously, bias in stock assessment 
results from an "inappropriate choice of the resource assessment model" (Geromont and Butterworth 
2000) can be amplified by this phenomenon. The best fitting time series might not necessarily be 
unbiased in the abundance trends that they suggest. 
 
(3) If empirically determined input variances are applied in the weighting method, can the method 
allow for readjustments of these weightings based on the goodness of fit of the model to the data?   
 

This would be desirable if some of the inputted variances did not incorporate the sources of 
variance in the data that were not accounted for by the stock assessment model or were not directly 
comparable. For example, variances for data points derived from research survey data are often not 
comparable with those derived from GLM analysis of CPUE data.  Factors that are controlled for in 
research surveys are often not controlled for in catch rate indices and the assumption of random 
sampling from the entire population, though applied in analyses of both types of data, are not always 
entirely applicable to the latter. Also, GLM treatments of different CPUE time series are often not 
comparable because they apply different sets of explanatory variables or factors such as only month 
versus month and area (Geromont and Butterworth 2000).  In such cases, the random effects GLM 
estimates of variances from these different GLMs will not be comparable.  Where fewer factors are 
incorporated, the variance estimates for a given series will be more negatively biased (Geromont and 
Butterworth 2000). The result, if the weighting method relied solely on these inputted variances, 
would be that such series would be given undue weight in the stock assessment. This has long been 



identified as a classic problem for the input weight method that relies solely on sampling or GLM 
estimated variances (methods 7 and 9) (McAllister 1995; Geromont and Butterworth 2000).  Thus 
some methods (e.g., 8) have been suggested that allow for readjustments of such input weightings 
based on the goodness of fit between the model and the data. Method 8 introduces an additional 
variance parameter to be estimated for each time series. If the input variances in one of the series, are 
negatively biased, the fitting of the stock assessment model to the set of series should in theory pick 
this up and provide a positive estimate of the additional variance term for this series. Questions raised 
during a discussion of this method in the ICCAT Methods Working Group meeting in May 2000, 
Madrid suggest criteria and these are reformulated below. 
 
(4) Does the weighting method allow the incorporation of expert judgement on the relative reliability 
of each series as an index of abundance? 
 

While it appears scientifically objective to rely entirely on estimation methods to determine the 
weightings of different time series (e.g., methods 2, 3, 4, 8), several conditions are required by this 
approach to provide unbiased stock assessment results. The structure of the stock assessment model 
applied must not be mis-specified, each of the data series is equally reliable as an unbiased trend in 
abundance, and the data sets are sufficiently long to precisely estimate variances. However, in most 
stock assessments these conditions almost never hold conjointly. If any one of them does not hold, 
then biased stock assessment results can be produced.  Take for example, the considerable difference 
in the reliability as indices of abundance between fishery independent and fishery dependent data.  
For reasons given above, these differences are often not accurately reflected in the input weightings 
estimated, e.g., from GLM. The GLM variances for the CPUE data can often be less than sample 
variances for research survey data points, despite the greater reliability of the latter. If the trend is 
smoother in the CPUE series, as it often can be, then most stock assessment models will tend to fit 
this time series best and the stock assessment model estimate of the variance for the CPUE trend will 
be lowest and most weight will be accorded to it.  Without some intervention by the stock assessment 
scientists, methods 2, 3, 4, and 8 would not be able to avoid this undesirable result. As bias in 
estimated trends is often a far more serious a problem than imprecision, it seems desirable and 
sensible to adopt a weighting methodology that allows for sensible interventions and constraints on 
the otherwise "hands-off" approach to weighting. This forms the fourth criterion: Does the weighting 
method allow the incorporation of expert judgement on the relative reliability of each series as an 
index of abundance?  A single baseline set of relative input weightings could be adopted by the stock 
assessment scientists before running the stock assessment model. This would take into cons ideration 
(i) whether the index was fishery independent, and (ii) the overall scientific credibility of the time 
series as an index of relative abundance. More work is needed on developing an objective basis to 
come up with the latter. Guidelines should account for the spatial and annual temporal coverage of an 
index with respect to the spatial range and annual movements of the fish stock and the age classes 
indexed. Although it may be impossible to reach a consensus on relative input weightings by expert 
judgement, a baseline set is desirable. This is because scientists are typically better qualified to 
determine the relative scientific credibility of different data series than fishery managers. It would be 
absolutely essential for the reasons behind assigning the relative weightings to be documented.  
   
(5) Does the weighting method prevent the most reliable data sets from being down weighted?  
 

Even if all of the above criteria are met, the manner in which the goodness of fit to the stock 
assessment model updates the inputted weights will affect whether and to what extent the relative 
weightings determined by expert judgement are updated. In doing so, it is desirable that the weighting 
method should incorporate sensible constraints to prevent the time series originally deemed to be the 
most reliable from being down-weighted. Otherwise, what's the point of using expert judgement in the 
first place?  Methods 5 and 6, which satisfy criteria 1 to 4, differ in this respect.  In method 5, poorer 
goodness of fit will lead to all of the time series having more and more similar final weightings. In 
contrast, method 6 preserves the inputted relative weightings but still allows adjustments to the 
magnitudes of all of the weightings according to goodness of fit to the stock assessment model.   
 



 

(6) Is the weighting method appropriate for relatively few data points in the time series?   
 

If weightings are estimated based on goodness of fit to the stock assessment model, it is usually 
necessary for there to be at least 15 or more data points in the series to permit estimation of the 
variance. Often this is not the case in stock assessment. It would be desirable thus, for the weighting 
method, applied to incorporate sensible constraints and allow a sensible intervention if there are 
relatively few data points in a data series. Methods 5 and 6 allow this. 
 
(7) Could the weighting method be expected to result in an accurate assessment of parameter 
uncertainty?   
 

This is unlikely if the goodness of fit to the stock assessment model is ignored by the weighting 
method as in methods 1, 7, and 9 and especially if the weightings are determined only by GLM 
analysis; this will tend to underestimate the model fit variances and thus parameter uncertainty. If the 
weighting method relies on goodness of fit to the stock assessment model but is entirely "hands off", 
this is also unlikely for reasons mentioned under criteria 4 above. For example, to be valid, these 
methods rely on the structure of the stock assessment model applied to not be mis-specified, each of 
the data series to be equally reliable as an unbiased trend in abundance, and the data sets to be 
sufficiently long to precisely estimate variances.   
 
(8) Is the method easily put into practice?   
 

Are sufficient data, scientific information and expertise available to sensibly apply the method? 



 

 

Table 1.  Some of the relative merits of the alternative weighting methods.  See the methods section for a more detailed description of the alternative weighting methods. 
GOF stands for goodness of fit of the stock assessment model to the data series.  See Appendix 1 for an outline of the different selection criteria. 

Method 1. Incorporation 
of GLM 
estimates of 
variance for 
data points  

2. Avoids 
according 
unrealistically 
high precision to 
some data series 

3. Allows for 
GOF 
readjustments 
of input 
weightings 

4. Allows expert 
judgment of the 
relative 
reliability of 
each data series 

5. Most reliable 
data series 
prevented from 
being down-
weighted 

6. Conducive to 
relatively few 
data in the time 
series (e.g., < 15 
years)  

7. Giving 
accurate 
assessment of 
parameter 
uncertainty  

1. Equal input weightings No Yes No No N/A Possibly Unlikely 

2. Weighting by MLE No No Yes No No No Unlikely 

3. Input variance 
multiplied by a scale 
parameter estimated for 
each series 

Yes No Yes No No Not necessarily Unlikely 

4. Iterative reweighting No No Yes No No No Unlikely 

5. Input variance 
modified by expert 
judgement plus a scale 
parameter 

Yes Yes Yes Yes Yes, if estimated 
scale parameter is 
not much larger 
than inputted 
variances 

Yes Possibly 

6. Input variance 
modified by expert 
judgement multiplied by 
a scale parameter 

Yes Yes Yes Yes Yes Yes Possibly 

7. Wt = 1/Input CV2 Yes Yes No No N/A N/A No 

8. Input variance plus a 
scale parameter estimated 
for each series 

Yes Yes, if estimated 
scale parameters 
are not much 
larger than 
inputted variances  

Yes No No No Requires 
unbiased time 
series and 
assessment 
model 

9. Input fixed estimated 
variances with no 
updating of them 

Yes Yes No No N/A N/A No 



 

 

Table 2. CPUE indices used in the model. Only series that indexed mature fish and had been used in the baseline VPA were included (ICCAT 1998).   
Name Can GSL CV Can SWNS CV JLL GOM CV JLL Area wt CV Larval  CV US LL GOM CV US RR >195 CV 
Age Range 13+   7-13  10+   4-10+   8-10+   8-10+   8-10+   
Indexing Numbers   Numbers   Numbers   Numbers   Biomass  Numbers   Numbers   

1962       3.673 0.2       
1963       1.621 0.2       
1964       0.904 0.2       
1965       0.811 0.2       
1966       0.959 0.2       
1967       0.169 0.2       
1968       0.053 0.2       
1969       0.099 0.2       
1970       0.004 0.2       
1971               
1972               
1973               
1974     0.968 0.266         
1975     0.534 0.205         
1976     0.666 0.207         
1977     0.913 0.216   2.435 0.433     
1978     0.876 0.225   5.824 0.272     
1979     1.287 0.283         
1980     1.158 0.265         
1981 6.072 0.289   0.553 0.239   1.277 0.432     
1982 5.578 0.285       1.514 0.311     
1983 7.673 0.273       1.235 0.308   1.923 0.242 
1984 4.414 0.290       0.653 0.802   1.136 0.256 
1985 1.643 0.307           0.714 0.277 
1986 1.829 0.350       0.261 0.606   0.712 0.602 
1987 0.963 0.526       0.445 0.507 0.880 0.292 0.711 0.340 
1988 1.805 0.407 2.947 0.332     1.946 0.326 0.400 0.451 0.828 0.287 
1989 2.112 0.412 4.907 0.304     0.798 0.439 0.700 0.311 0.853 0.296 
1990 1.048 0.396 4.050 0.304     0.474 0.200 0.850 0.309 0.755 0.293 
1991 1.975 0.426 3.195 0.304     0.365 0.594 1.000 0.301 0.961 0.276 
1992 2.874 0.357 2.845 0.243     0.614 0.382 0.240 0.529 0.912 0.274 
1993 2.153 0.322 1.062 0.236     0.667 0.615 0.230 0.562 0.681 0.369 
1994 0.629 0.380 2.177 0.249     0.720 0.405 0.100 0.900 0.683 0.384 
1995 2.950 0.286 1.851 0.235     0.465 0.585 0.170 0.683 1.031 0.305 
1996 0.767 0.287 0.650 0.244     1.458 0.630 0.180 0.696 1.772 0.344 
1997 0.823 0.287 0.750 0.246     0.619 0.448 0.310 0.536 1.327 0.333 



 

 

Table 3. Maximum likelihood estimates of K and r from each weighting method. 
 
Method K r 

1. Equal input weightings 64758 0.34 

2. Weighting by MLE 194676 0.01 

3. Input variance multiplied by a scale parameter estimated 
for each series 

183856 0.01 

4. Iterative reweighting 194676 0.01 

5. Input variance plus a scale parameter 69234 0.30 

6. Input variance multiplied by a scale parameter 66024 0.33 

7. Wt = 1/Input CV2 64119 0.35 

8. Input variance plus a scale parameter estimated for each 
series 

190853 0.01 

9. Input fixed estimated variances with no updating of them 64119 0.35 

 
 
Table 4.  Sum of residual deviance for each method and data series.    
 
Method Can 

GSL 
Can 
SWNS 

JLL 
GOM 

JLL 
Area wt 

Larval  US LL 
GOM 

US RR 
>195 

Total 

1. Equal input 
weightings 

6.67 1.32 1.01 27.46 6.32 3.43 3.71 49.92 

2. Weighting by MLE 20.22 8.46 8.87 3.23 27.67 12.70 25.90 107.05 

3. Input variance 
multiplied by a scale 
parameter estimated for 
each series 

27.62 8.66 8.00 3.24 40.65 32.14 34.32 154.63 

4. Iterative reweighting 20.37 8.48 8.94 3.26 27.82 12.72 25.93 107.52 

5. Input variance plus a 
scale parameter 

13.05 2.60 2.12 61.26 13.65 5.96 8.59 107.23 

6. Input variance 
multiplied by a scale 
parameter 

12.58 2.37 2.06 56.71 16.73 5.13 9.39 104.97 

7. Wt = 1/Input CV2 114.67 21.50 26.73 1143.99 83.58 42.59 92.58 1525.64 

8. Input variance plus a 
scale parameter 
estimated for each series 

19.13 8.44 9.11 3.23 25.84 10.36 27.99 104.11 

9. Input fixed estimated 
variances with no 
updating of them 

82.95 27.43 33.37 1167.28 75.03 14.34 85.90 1486.29 

Number of points in 
series 

17 10 8 9 18 11 15 88 

Chi squared 95% 
significance level 
(df=n-1) 

7.96 3.33 2.17 2.73 8.67 3.94 6.57 66.50 



 

 

Table 5.  Average of the weights applied to data points in each series, normalized so that the weights sum to 
one, as input to the model.   
 
Method Can 

GSL 
Can 
SWNS 

JLL 
GOM 

JLL 
Area wt 

Larval  US LL 
GOM 

US RR 
>195 

1. Equal input weightings 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
2. Weighting by MLE NA NA NA NA NA NA NA 
3. Input variance multiplied by 
a scale parameter estimated for 
each series 

0.10 0.16 0.20 0.27 0.08 0.07 0.12 

4. Iterative reweighting NA NA NA NA NA NA NA 
5. Input variance plus a scale 
parameter 

0.14 0.14 0.14 0.14 0.14 0.14 0.14 

6. Input variance multiplied by 
a scale parameter 

0.14 0.14 0.14 0.14 0.14 0.14 0.14 

7. Wt = 1/Input CV2 0.10 0.16 0.20 0.28 0.07 0.06 0.12 
8. Input variance plus a scale 
parameter estimated for each 
series 

0.10 0.16 0.20 0.27 0.08 0.07 0.12 

9. Input fixed estimated 
variances with no updating of 
them 

0.10 0.16 0.20 0.27 0.08 0.07 0.12 

 
 
Table 6.  Average of the weights applied to data points in each series, normalized so that the weights sum to 
one, from the fitted model. 
 
Method Can 

GSL 
Can 
SWNS 

JLL 
GOM 

JLL 
Area wt 

Larval  US LL 
GOM 

US RR 
>195 

1. Equal input weightings 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
2. Weighting by MLE 0.12 0.16 0.30 0.01 0.10 0.11 0.20 
3. Input variance multiplied by 
a scale parameter estimated for 
each series 

0.12 0.23 0.23 0.01 0.12 0.18 0.11 

4. Iterative reweighting 0.15 0.20 0.37 0.01 0.13 0.13 0.25 
5. Input variance plus a scale 
parameter 

0.14 0.14 0.14 0.14 0.15 0.15 0.14 

6. Input variance multiplied by 
a scale parameter 

0.13 0.13 0.13 0.13 0.16 0.19 0.13 

7. Wt = 1/Input CV2 0.10 0.16 0.20 0.28 0.07 0.06 0.12 
8. Input variance plus a scale 
parameter estimated for each 
series 

0.12 0.17 0.28 0.01 0.10 0.13 0.18 

9. Input fixed estimated 
variances with no updating of 
them 

0.10 0.16 0.20 0.27 0.08 0.07 0.12 

 
 



 

 

Table 7. Average of the sigmas for the points in each data series, input to the model. 
 
Method Can 

GSL 
Can 
SWNS 

JLL 
GOM 

JLL 
Area wt 

Larval  US LL 
GOM 

US RR 
>195 

1. Equal input weightings 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2. Weighting by MLE NA NA NA NA NA NA NA 
3. Input variance multiplied by 
a scale parameter estimated for 
each series 

0.34 0.27 0.24 0.20 0.45 0.49 0.32 

4. Iterative reweighting NA NA NA NA NA NA NA 
5. Input variance plus a scale 
parameter 

0.50 0.50 0.50 0.50 0.50 0.50 0.50 

6. Input variance multiplied by 
a scale parameter 

0.50 0.50 0.50 0.50 0.50 0.50 0.50 

7. Wt = 1/Input CV2 0.39 0.38 0.38 0.47 0.35 0.25 0.40 
8. Input variance plus a scale 
parameter estimated for each 
series 

0.34 0.27 0.24 0.20 0.45 0.49 0.32 

9. Input fixed estimated 
variances with no updating of 
them 

0.34 0.27 0.24 0.20 0.45 0.49 0.32 

 
 
 
Table 8. Average of the sigmas estimated for the points in each data series, from the fitted mo del. 
 
Method Can 

GSL 
Can 
SWNS 

JLL 
GOM 

JLL 
Area wt 

Larval  US LL 
GOM 

US RR 
>195 

1. Equal input weightings 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2. Weighting by MLE 0.58 0.50 0.37 1.86 0.63 0.62 0.45 
3. Input variance multiplied by 
a scale parameter estimated for 
each series 

0.56 0.39 0.39 1.84 0.67 0.57 0.61 

4. Iterative reweighting 0.58 0.50 0.37 1.86 0.63 0.62 0.45 
5. Input variance plus a scale 
parameter 

0.77 0.77 0.77 0.77 0.77 0.77 0.77 

6. Input variance multiplied by 
a scale parameter 

0.78 0.78 0.78 0.78 0.78 0.78 0.78 

7. Wt = 1/Input CV2 0.35 0.27 0.24 0.20 0.48 0.54 0.34 
8. Input variance plus a scale 
parameter estimated for each 
series 

0.58 0.48 0.38 1.85 0.65 0.60 0.48 

9. Input fixed estimated 
variances with no updating of 
them 

0.34 0.27 0.24 0.20 0.45 0.49 0.32 



 

 

 
 

 
Figure 1.  Indices of abundance and catch rate indices used in model.   
 
 
 

 
Figure 2.  Biomass trends estimated by each weighting method.      
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